Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.552
Filtrar
1.
Am J Chin Med ; 52(2): 387-415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38490808

RESUMO

Turmeric is widely used worldwide, and there are many examples of its use in treating hepatobiliary diseases. The gut-liver axis is a bidirectional relationship between gut microorganisms and the liver that is closely related to the pathogenesis of hepatobiliary diseases. This review systematically summarizes the components of turmeric. It links the studies on turmeric affecting gut microorganisms to its effects on liver and biliary diseases to explain the potential mechanism of turmeric's regulation of the gut-liver axis. Besides, ethnopharmacology, phytochemicals, and clinical adverse events associated with turmeric have been researched. Furthermore, turmeric is a safe agent with good clinical efficacy and without apparent toxicity at a certain amount. By summarizing the influence of turmeric on the liver by regulating the gut-liver axis, especially the gut microbiota, it provides a preclinical basis for using turmeric as a safe and effective therapeutic agent for the prevention and treatment of hepatobiliary diseases based on the gut-liver axis. However, more efforts should be made to exploit its clinical application further.


Assuntos
Curcuma , Doenças do Sistema Digestório , Humanos , Curcuma/química , Fígado , Doenças do Sistema Digestório/tratamento farmacológico , Doenças do Sistema Digestório/patologia
2.
BMC Complement Med Ther ; 24(1): 16, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166788

RESUMO

BACKGROUND AND AIMS: Curcuma aeruginosa, commonly known as "kha-min-dam" in Thai, holds significance in Asian traditional medicine due to its potential in treating various diseases, having properties such as anti-HIV, hepatoprotective, antimicrobial and anti-androgenic activities. This study explores the anticancer activity of C. aeruginosa essential oil (CAEO) and its nano-formulations. METHODS: CAEO obtained from hydrodistillation of C. aeruginosa fresh rhizomes was examined by gas chromatography mass spectroscopy. Cytotoxicity of CAEO was determined in leukaemic K562 and breast cancer MCF-7 cell lines using an MTT assay. Cell cycle analysis and cell apoptosis were determined by flow cytometry. Cell migration was studied through a wound-healing assay. RESULTS: Benzofuran (33.20%) emerged as the major compound of CAEO, followed by Germacrene B (19.12%) and Germacrone (13.60%). Two types of CAEO loaded nano-formulations, nanoemulsion (NE) and microemulsion (ME) were developed. The average droplet sizes of NE and ME were 13.8 ± 0.2 and 21.2 ± 0.2 nm, respectively. In a comparison with other essential oils from the fresh rhizomes of potential plants from the same family (Curcuma longa, Curcuma mangga and Zingiber officinale) on anticancer activity against K562 and MCF-7 cell lines, CAEO exhibited the highest cytotoxicity with IC50 of 13.43 ± 1.09 and 20.18 ± 1.20 µg/mL, respectively. Flow cytometry analysis revealed that CAEO significantly increased cell death, evidenced from the sub-G1 populations in the cell cycle assay and triggered apoptosis. Additionally, CAEO effectively inhibited cell migration in MCF-7 cells after incubation for 12 and 24 h. The developed NE and ME formulations significantly enhanced the cytotoxicity of CAEO against K562 cells with an IC50 of 45.30 ± 1.49 and 41.98 ± 0.96 µg/mL, respectively. CONCLUSION: This study's finding suggest that both nano-formulations, NE and ME, effectively facilitated the delivery of CAEO into cancer cells.


Assuntos
Óleos Voláteis , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Curcuma/química , Apoptose , Células MCF-7 , Movimento Celular
3.
PLoS One ; 19(1): e0297202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38241307

RESUMO

Turmeric, a globally cultivated spice, holds significance in medicine, and cosmetics, and is also a very popular ingredient in South Asian cuisine. A study involving 53 turmeric genotypes evaluated for rhizome yield and related traits at Spices Research Center, Bogura, Bangladesh over three years (2019-22). A randomized complete block design was followed with two replications. ANOVA revealed significant trait variations among genotypes. Genotype T0015 emerged as the highest yielder at 28.04 t/ha. High heritability (0.58-0.99) and genetic advance characterized plant height (PH), mother rhizome weight (WMR), primary and secondary finger weights (WPF and WSF), and yield per plant (YPP) across seasons. Genetic gain (GG) was prominent in these traits. Genotypic and phenotypic coefficient variations (GCV and PCV) (6.24-89.46 and 8.18-90.88, respectively) across three years highlighted mother rhizome weight's importance followed by numbers of primary finger (NPF), and WPF. Positive and significant correlations, especially with PH, WMR, WPF, and YPP, emphasized their relevance to fresh yield (FY). Multiple linear regression identified PH, number of mother rhizome (NMR) and WMR as key contributors, explaining 37-79% of FY variability. Cluster analysis grouped genotypes into five clusters with maximum distance observed between clusters II and III. The geometric adaptability index (GAI) assessed adaptability and superiority, revealing nine genotypes outperforming the best existing cultivar. Genotype T0117 as the top performer based on GAI, followed by T0103 and T0094. Mean rank analysis favoured T0121 as the best performer, succeeded by T0117, T0082 and T0106. The top ten genotypes (T0015, T0061, T0082, T0085, T0094, T0103, T0106, T0117, T0121 and T0129) were identified as superior based on yield and overall ranking, warranting further evaluation. These findings may induce a window for improving turmeric research and ultimately play a role in enhancing its cultivation and productivity.


Assuntos
Curcuma , Bangladesh , Curcuma/genética , Curcuma/química , Genótipo , Fenótipo
4.
BMC Complement Med Ther ; 24(1): 31, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212737

RESUMO

Aging or senescence is part of human life development with many effects on the physical, mental, and physiological aspects which may lead to age-related deterioration in many organs. Genus Curcuma family Zingieraceae represents one of the well-studied and medically important genera with more than eighty species. The genus is reported to contain different classes of biologically active compounds that are mainly presented in diphenylheptanoids, diphenylpentanoids, diphenylalkanoids, phenylpropene derivatives, alkaloids, flavonoids, chromones, terpenoids, phenolic acids and volatile constituents. Rhizomes and roots of such species are rich with main phytoconstituents viz. curcumin, demethoxycurcumin and bis-demethoxycurcumin. A wide variety of biological activities were demonstrated for different extracts and essential oils of genus Curcuma members including antioxidant, anti-inflammatory, cytotoxic and neuroprotective. Thus, making them as an excellent safe source for nutraceutical products and as a continuous promising area of research on lead compounds that may help in the slowing down of the aging process especially the neurologic and mental deterioration that are usually experienced upon aging. In this review different species of the genus Curcuma were summarized with their phytochemical and biological activities highlighting their role as antiaging agents. The data were collected from different search engines viz. Pubmed®, Google Scholar®, Scopus® and Web of Science® limiting the search to the period between 2003 up till now.


Assuntos
Alcaloides , Diarileptanoides , Fitoterapia , Humanos , Curcuma/química , Etnofarmacologia , Alcaloides/química
5.
J Ethnopharmacol ; 321: 117531, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042387

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Zedoary turmeric oil injection (ZTOI) extracted from the rhizome extract of Curcuma phaeocaulis Valeton, Curcuma wenyujin Y. H. Chen et C. Ling or Curcuma kwangsiensis S. G. Lee et C. F. Liang, is widely used for the treatment of virus-induced upper respiratory tract infections, peptic ulcers, viral pneumonia, etc. However, it has attracted widespread attention because it often causes adverse drug reactions (ADRs), including dyspnea. However, little is known about the mechanism underlying dyspnea caused by ZTOI, which limits its clinical application. AIM OF THE STUDY: To investigate the major pathophysiologic signatures and underlying mechanism of ZTOI-related dyspnea. METHODS: Respiratory function detection was used to explore the pathophysiologic signature of dyspnea induced by ZTOI. UV-vis absorption spectroscopy and isothermal titration calorimetry were applied to test the interaction between ZTOI and hemoglobin (Hb). GC‒MS was used to identify the main components in ZTOI. Molecular docking, surface plasmon resonance, and circular dichroism spectroscopy were employed to test the reaction between ß-elemene and Hb. Western blot was performed to investigate the effect of ß-elemene on the hypoxia signaling pathway. RESULTS: The results showed that ZTOI-induced dyspnea was related to a decreased oxygen carrying capacity of Hb. The molecular interaction between ZTOI and Hb was proven. Notably, ß-elemene in ZTOI exhibited high binding affinity to Hb and altered its secondary structure. Furthermore, it was found that ß-elemene downregulated the expression of prolyl hydroxylase-domain protein 2 and upregulated the expression of hypoxia-inducible factor-1α. CONCLUSIONS: Our study is valuable for better understanding the pathophysiological characteristics and underlying mechanism of ZTOI to ensure its safe clinical application. We also provided a strategy to elucidate the underlying mechanism based on inspiration from clinical ADR phenotypes for investigating other medical products with ADRs in the clinic.


Assuntos
Curcuma , Sesquiterpenos , Humanos , Curcuma/química , Subunidade alfa do Fator 1 Induzível por Hipóxia , Simulação de Acoplamento Molecular , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Hemoglobinas , Dispneia/induzido quimicamente , Dispneia/tratamento farmacológico
6.
J Diet Suppl ; 21(1): 28-37, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36786714

RESUMO

Turmeric is well-known for its analgesic, anti-inflammatory and anti-arthritic properties but 69.4% of the turmeric rhizome contains Turmerosaccharides whose clinical benefit is still unexplored. Turmacin®/NR-INF-02 is an aqueous extract of Turmeric containing Turmerosaccharides (>10%w/w) with negligible curcuminoids. Previous study with low dose Turmacin® confirmed its safety and efficacy in alleviating induced knee pain in healthy volunteers. Hence, this study aimed to assess the safety and explore the efficacy of moderately high dose Turmacin®. It was an open-label, single-arm interventional trial conducted from August 2018 - January 2019 in a tertiary care teaching hospital. Turmacin® was administered for seven days to 15 healthy volunteers as four capsules of 500 mg each in the morning with food. The stair mill at a speed of 60 steps per minute was used to induce knee pain and Visual Analogue Scale (VAS) was used to measure the pain intensity. Assessments were performed at baseline, Days 5 and 7. One participant reported dyspepsia of mild grade that resolved on its own. When compared to baseline, time to initial discomfort significantly increased on Day-5 (Mean Difference [MD] = 30s, p = 0.016) and Day-7 (MD = 32s, p = 0.007). Whereas the maximum VAS score decreased with time and on Day-7 and it was significantly low when compared with baseline (MD = -0.93, p = 0.008). In summary, Turmacin® supplements given at a dose of 2 g/day was safe and tolerable. Similar to the previous study with low dose Turmacin®, there was a significant increase in pain threshold and decrease in the maximum pain score post intervention.


Assuntos
Curcuma , Dor , Extratos Vegetais , Adulto , Humanos , Anti-Inflamatórios , Curcuma/química , Suplementos Nutricionais , Dor/tratamento farmacológico , Medição da Dor , Extratos Vegetais/farmacologia , Estudo de Prova de Conceito , Joelho
7.
Se Pu ; 41(12): 1115-1120, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38093541

RESUMO

The chemical constituents of volatile oils used in traditional Chinese medicine are highly complex. Thus, achieving the complete separation of volatile oils by one-dimensional chromatography is difficult owing to the low peak capacity of the technique. Although comprehensive two-dimensional gas chromatography provides an efficient means for separating volatile oils, it cannot be used to screen bioactive components because of its limitations. Therefore, developing a new method to separate volatile oils based on liquid chromatography is of great significance in efforts to obtain new approaches to screen bioactive components in volatile oil. The objectives of the present study are to establish an efficient method for separating the chemical constituents of Curcuma volatile oil using off-line comprehensive two-dimensional countercurrent chromatography-liquid chromatography (CCC-LC) and to investigate the two-dimensional peak capacity, orthogonality, and spatial coverage of this method. Both CCC and LC conditions were optimized. A biphasic n-hexane-methanol-water solvent system was selected via the colorimetric method, and the lower phase was used as the mobile phase in gradient-elution mode: 0-55 min, n-hexane-methanol-water (5∶2∶3 v/v/v); 55-170 min, n-hexane-methanol-water (5∶3∶2, v/v/v); 170-290 min, n-hexane-methanol-water (5∶4∶1, v/v/v). After gradient elution, elution-extrusion elution mode was applied within 290-375 min. Good resolution was achieved by the CCC separation process. The HPLC separation process was carried out with gradient elution using a mobile phase composed of acetonitrile (A)-water (B): 0-10 min, 50%A-65%A; 10-14 min, 65%A; 14-21 min, 65%A-85%A; 21-25 min, 85%A-95%A; 25-30 min, 95%A-55%A; 30-40 min, 55%A. Curcuma volatile oil was separated under the above optimized two-dimensional separation conditions, and the data obtained were drawn into a two-dimensional contour map using Matlab software. The calculated total peak capacity exceeded 954, which was 10 times more than that of one-dimensional chromatography. High orthogonality (r=0.17) and spatial coverage factor (68.1%) were also obtained. Our research provides a new methodology for separating volatile oils used in traditional Chinese medicine as well as an approach for evaluating the quality of traditional Chinese medicinal herbs using two-dimensional chromatographic fingerprints.


Assuntos
Distribuição Contracorrente , Óleos Voláteis , Distribuição Contracorrente/métodos , Metanol , Curcuma/química , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão , Água
8.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5419-5437, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114136

RESUMO

Curcuma wenyujin, as one of the eight Daodi-herbs in Zhejiang province, is widely used. It has the effects of eliminating stasis and dissipating mass, moving Qi and activating blood, and clearing heart and relieving depression. Modern studies have shown that it has anti-tumor, anti-inflammatory, anti-oxidation, anti-thrombus and liver-protecting effects and mainly contains sesquiterpenoids, monoterpenoids, diterpenoids, and curcumins. This paper reviews the research progress in the chemical constituents and pharmacological effects of C. wenyujin in the last decade, discusses the modern clinical applications combined with the traditional efficacy, and predicts its quality markers(Q-markers) from plant consanguinity, medicinal properties, efficacy, processing and measurability of chemical components based on the theory of Q-markers, so as to provide a reference for the establishment of a scientific quality evaluation system and the research and application of this herb in the future.


Assuntos
Curcuma , Anti-Inflamatórios , Curcuma/química , Fígado
9.
Int J Biol Macromol ; 253(Pt 4): 126827, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37696378

RESUMO

Curcumin (diferuloylmethane), the primary curcuminoid in turmeric rhizome, has been acknowledged as a bioactive compound for numerous pharmacological activities. Nonetheless, the hydrophobic nature, rapid metabolism, and physicochemical and biological instability of this phenolic compound correspond to its poor bioavailability. So, recent scientific advances have found many components and strategies for enhancing the bioavailability of curcumin with the inclusion of biotechnology and nanotechnology to address its existing limitations. Therefore, In this study, copolymerized aqua-gel was synthesized by graft polymerization of poly-acrylic acid (P-AA) on cellulose nanocrystals (CNC), after that Curcuma longa (Cur) was incorporated as dopant (5, 10, 15, and 25 mg) in hydrogel (Cur/C-P) as a stabilizing agent for evaluation of bacterial potential and sewage treatment. The antioxidant tendency of 25 mg Cur/C-P was much higher (72.21 %) than other samples and displayed a catalytic activity of up to 93.89 % in acidic conditions and optimized bactericidal inclinations toward gram-positive bacterial strains. Furthermore, ligand binding was conducted against targeted protein enoyl-[acylcarrier-protein] reductase (FabI) enzyme to comprehend the putative mechanism of microbicidal action of CNC-PAA (CP), Cur/C-P, and curcumin. Our outcomes suggest that 25 mg Cur/C-P hydrogels are plausible sources for hybrid, multifunctional biological activity.


Assuntos
Curcumina , Curcumina/química , Curcuma/química , Simulação de Acoplamento Molecular , Celulose/metabolismo , Hidrogéis/metabolismo , Catálise
10.
Altern Ther Health Med ; 29(6): 12-24, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37574203

RESUMO

Context: Turmeric is a well-known herb that has been used in many traditional medicinal systems since ancient times. Turmeric roots contain hydrophobic polyphenols called curcuminoids, which have proven anti-inflammatory and antioxidant effects and are shown to be beneficial for the management of musculoskeletal health. Various products containing curcumin or turmeric extract are commercially available. Objective: This systematic review and meta-analysis of randomized clinical trials (RCTs) is intended to evaluate the effective dose, safety, and efficacy of commercial turmeric extract and curcumin supplements in musculoskeletal health. Design: The research team performed a systematic literature search of PubMed, Google Scholar, and Cochrane Library databases and conducted a meta-analysis according to PRISMA guidelines. Setting: Authors from India and USA contributed to this systematic review and meta-analysis. Results: The research team analyzed 21 prospective, randomized clinical studies, of which seven studies were focused on skeletal muscle health and fourteen on joint health. Statistical heterogeneity was established based on the results of heterogeneity analysis of a Chi-square (χ2) value for Cochran's Q statistic of 29.3765 for musculoskeletal and 3666.80 for joint health studies (P < .0001 for both analyses). Therefore, the random effects model was used. The χ2 value of the random effects model was 216.5545 for skeletal muscle health studies and 1400.65 for joint health studies, which was statistically significant with P < .0001 for both analyses. Conclusions: Turmeric extract and curcumin supplements can be effective adjuvants for the management of musculoskeletal health, with a low incidence of AEs. The water-dispersible turmeric extract, WDTE60N, at a dose of 250 mg per day, was found to be more effective than other curcumin products. However, the studies included in the analysis were conducted using diverse doses and treatment durations. Further evaluation using comparisons in future clinical trials can establish the appropriate effective dose of curcumin supplements for the overall maintenance of musculoskeletal health.


Assuntos
Curcumina , Humanos , Curcumina/uso terapêutico , Curcuma/química , Extratos Vegetais/uso terapêutico , Anti-Inflamatórios/uso terapêutico
11.
Molecules ; 28(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37570846

RESUMO

The gas chromatography-ion mobility spectrometry (GC-IMS) method is a new technology for detecting volatile organic compounds. This study was carried out to evaluate the effects of volatile aroma compounds of Curcuma essential oils (EOs) after 60Co radiation by GC-IMS. Dosages of 0, 5, and 10 kGy of 60Co were used to analyze EOs of Curcuma after 60Co irradiation (named EZ-1, EZ-2, and EZ-3). The odor fingerprints of volatile organic compounds in different EOs of Curcuma samples were constructed by headspace solid-phase microextraction and GC-IMS after irradiation. The differences in odor fingerprints of EOs were compared by principal component analysis (PCA). A total of 92 compounds were detected and 65 compounds were identified, most of which were ketones, aldehydes, esters, and a small portion were furan compounds. It was found that the volatile matter content of 0 kGy and 5 kGy was closer, and the use of 10 kGy 60Co irradiation would have an unstable effect on the EOs. In summary, it is not advisable to use a higher dose when using 60Co irradiation for sterilization of Curcuma. Due to the small gradient of irradiation dose used in the experiment, the irradiation dose can be adjusted appropriately according to the required sterilization requirements during the production and storage process of Curcuma to obtain the best irradiation conditions. GC-IMS has the advantages of GC's high separation capability and IMS's fast response, high resolution, and high sensitivity, and the sample requires almost no pretreatment; it can be widely used in the analysis of traditional Chinese medicines containing volatile components. It is shown that irradiation technology has good application prospects in the sterilization of traditional Chinese medicines, but the changes in irradiation dose and chemical composition must be paid attention to.


Assuntos
Óleos Voláteis , Compostos Orgânicos Voláteis , Óleos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Curcuma/química , Compostos Orgânicos Voláteis/análise , Microextração em Fase Sólida/métodos
12.
Res Vet Sci ; 162: 104958, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37517298

RESUMO

Antibiotics have the potential to have both direct and indirect detrimental impacts on animal and human health. For instance, antibiotic residues and pathogenic resistance against the drug are very common in poultry because of antibiotics used in their feed. It is necessary to use natural feed additives as effective alternatives instead of synthetic antibiotics. Curcumin, a polyphenol compound one of the natural compounds from the rhizomes of turmeric (Curcuma spp.) and has been suggested to have several therapeutic benefits in the treatment of human diseases. Curcumin exhibited some positive responses such as growth promoter, antioxidant, antibacterial, antiviral, anticoccidial, anti-stress, and immune modulator activities. Curcumin played a pivotal role in regulating the structure of the intestinal microbiome for health promotion and the treatment of intestinal dysbiosis. It is suggested that curcumin alone or a combination with other feed additives could be a dietary strategy to improve poultry health and productivity.


Assuntos
Curcumina , Humanos , Animais , Curcumina/farmacologia , Curcumina/uso terapêutico , Curcumina/química , Aves Domésticas , Antioxidantes/uso terapêutico , Dieta/veterinária , Curcuma/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
13.
Am J Chin Med ; 51(5): 1189-1209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37314412

RESUMO

HIV mutations occur frequently despite the substantial success of combination antiretroviral therapy, which significantly impairs HIV progression. Failure to develop specific vaccines, the occurrence of drug-resistant strains, and the high incidence of adverse effects due to combination antiviral therapy regimens call for novel and safer antivirals. Natural products are an important source of new anti-infective agents. For instance, curcumin inhibits HIV and inflammation in cell culture assays. Curcumin, the principal constituent of the dried rhizomes of Curcuma longa L. (turmeric), is known as a strong anti-oxidant and anti-inflammatory agent with different pharmacological effects. This work aims to assess curcumin's inhibitory effects on HIV in vitro and to explore the underpinning mechanism, focusing on CCR5 and the transcription factor forkhead box protein P3 (FOXP3). First, curcumin and the RT inhibitor zidovudine (AZT) were evaluated for their inhibitory properties. HIV-1 pseudovirus infectivity was determined by green fluorescence and luciferase activity measurements in HEK293T cells. AZT was used as a positive control that inhibited HIV-1 pseudoviruses dose-dependently, with IC50 values in the nanomolar range. Then, a molecular docking analysis was carried out to assess the binding affinities of curcumin for CCR5 and HIV-1 RNase H/RT. The anti-HIV activity assay showed that curcumin inhibited HIV-1 infection, and the molecular docking analysis revealed equilibrium dissociation constants of [Formula: see text]9.8[Formula: see text]kcal/mol and [Formula: see text]9.3[Formula: see text]kcal/mol between curcumin and CCR5 and HIV-1 RNase H/RT, respectively. To examine curcumin's anti-HIV effect and its mechanism in vitro, cell cytotoxicity, transcriptome sequencing, and CCR5 and FOXP3 amounts were assessed at different concentrations of curcumin. In addition, human CCR5 promoter deletion constructs and the FOXP3 expression plasmid pRP-FOXP3 (with an EGFP tag) were generated. Whether FOXP3 DNA binding to the CCR5 promoter was blunted by curcumin was examined using transfection assays employing truncated CCR5 gene promoter constructs, a luciferase reporter assay, and a chromatin immunoprecipitation (ChIP) assay. Furthermore, micromolar concentrations of curcumin inactivated the nuclear transcription factor FOXP3, which resulted in decreased expression of CCR5 in Jurkat cells. Moreover, curcumin inhibited PI3K-AKT activation and its downstream target FOXP3. These findings provide mechanistic evidence encouraging further assessment of curcumin as a dietary agent used to reduce the virulence of CCR5-tropic HIV-1. Curcumin-mediated FOXP3 degradation was also reflected in its functions, namely, CCR5 promoter transactivation and HIV-1 virion production. Furthermore, curcumin inhibition of CCR5 and HIV-1 might constitute a potential therapeutic strategy for reducing HIV progression.


Assuntos
Curcumina , Infecções por HIV , HIV-1 , Humanos , Curcumina/farmacologia , Curcumina/química , Curcuma/química , HIV-1/genética , HIV-1/metabolismo , Células HEK293 , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Quimiocinas , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Luciferases , Ribonuclease H/farmacologia , Fatores de Transcrição Forkhead/farmacologia , Receptores CCR5/genética , Receptores CCR5/metabolismo
14.
Anticancer Agents Med Chem ; 23(13): 1490-1498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139672

RESUMO

Germacrone, a kind of natural sesquiterpenoid compound, has been reported to exhibit many pharmacological properties, especially the anticancer effect. Many in vitro experiments have been performed on various cancer cell lines, trying to explore their anticancer mechanism. Aiming at investigating the anticancer effect of germacrone, this article reviews the extant information on existing literature about germacrone-related studies. The anticancer mechanisms and clinical usages of germacrone are summarized. Literature databases (such as PubMed and CNKI) are used to search the current studies and experimental research about the anticancer effect information of germacrone. Anticancer mechanism of germacrone includes cell cycle arrest inducing, programmed cell death (apoptosis, autophagy, pyroptosis and ferroptosis) inducing, and estrogen-related genes mediating. Structural modification and analogue design are worthy of further study in the future.


Assuntos
Antineoplásicos , Curcuma , Humanos , Proliferação de Células , Curcuma/química , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular , Apoptose
15.
Phytochem Anal ; 34(5): 518-527, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37139918

RESUMO

INTRODUCTION: Process analytical technology (PAT) guidance is implemented in the quality assurance of phytocompounds to achieve the Industry 4.0 concept. Near-infrared (NIR) and Raman spectroscopies are feasible for rapid, reliable quantitative analysis through transparent packaging without removing the samples from their original containers. These instruments can serve PAT guidance. OBJECTIVE: This study aimed to develop online portable NIR and Raman spectroscopic methods for quantifying total curcuminoids in turmeric samples through a plastic bag. The method mimicked an in-line measurement mode in PAT compared with placing samples into a glass vessel (at-line mode). MATERIALS AND METHODS: Sixty-three curcuminoid standard-spiked samples were prepared. Then, 15 samples were randomly selected as fixed validation samples, and 40 of the 48 remaining samples were chosen as calibration set. The results obtained from the partial least square regression (PLSR) models constructed by using the spectra acquired from NIR and Raman were compared with the reference values from high-performance liquid chromatography (HPLC). RESULTS: The optimum PLSR model of at-line Raman was achieved with three latent variables and a root mean square error of prediction (RMSEP) of 0.46. Meanwhile, the PLSR model of at-line NIR with one latent variable offered an RMSEP of 0.43. For the in-line mode, PLSR models created from Raman and NIR spectra had one latent variable with RMSEP of 0.49 and 0.42, respectively. The R2 values for prediction were 0.88-0.92. CONCLUSION: The models established from the spectra from portable NIR and Raman spectroscopic devices with the appropriate spectral pretreatments allowed the determination of total curcuminoid contents through plastic bag.


Assuntos
Curcuma , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Curcuma/química , Pós , Controle de Qualidade , Diarileptanoides , Análise dos Mínimos Quadrados , Calibragem , Plásticos
16.
Molecules ; 28(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241765

RESUMO

An increase in life expectancy leads to a greater impact of chronic non-communicable diseases. This is even more remarkable in elder populations, to whom these become main determinants of health status, affecting mental and physical health, quality of life, and autonomy. Disease appearance is closely related to the levels of cellular oxidation, pointing out the importance of including foods in one's diet that can prevent oxidative stress. Previous studies and clinical data suggest that some plant-based products can slow and reduce the cellular degradation associated with aging and age-related diseases. Many plants from one family present several applications that range from the food to the pharmaceutical industry due to their characteristic flavor and scents. The Zingiberaceae family, which includes cardamom, turmeric, and ginger, has bioactive compounds with antioxidant activities. They also have anti-inflammatory, antimicrobial, anticancer, and antiemetic activities and properties that help prevent cardiovascular and neurodegenerative diseases. These products are abundant sources of chemical substances, such as alkaloids, carbohydrates, proteins, phenolic acids, flavonoids, and diarylheptanoids. The main bioactive compounds found in this family (cardamom, turmeric, and ginger) are 1,8-cineole, α-terpinyl acetate, ß-turmerone, and α-zingiberene. The present review gathers evidence surrounding the effects of dietary intake of extracts of the Zingiberaceae family and their underlying mechanisms of action. These extracts could be an adjuvant treatment for oxidative-stress-related pathologies. However, the bioavailability of these compounds needs to be optimized, and further research is needed to determine appropriate concentrations and their antioxidant effects in the body.


Assuntos
Elettaria , Zingiberaceae , Zingiberaceae/química , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Curcuma/química , Qualidade de Vida , Extratos Vegetais/química
17.
Phytomedicine ; 114: 154810, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37075623

RESUMO

BACKGROUND: Breast cancer is the most prevalent cancer worldwide, with high morbidity and mortality. Despite great advances in the therapeutic strategies, the survival rate in the past decades of patients with breast cancer remains unsatisfactory. Growing evidence has demonstrated that Curcumae Rhizoma, called Ezhu in Chinese, showed various pharmacological properties, including anti-bacterial, anti-oxidant, anti-inflammatory and anti-tumor activities. It has been widely used in Chinese medicine to treat many types of human cancer. PURPOSE: To comprehensively summarize and analyze the effects of active substances in Curcumae Rhizoma on breast cancer malignant phenotypes and the underlying mechanisms, as well as discuss its medicinal value and future perspectives. METHOD: We used "Curcumae Rhizoma" or the name of crude extracts and bioactive components in Curcumae Rhizoma in combination with "breast cancer" as key words. Studies focusing on their anti-breast cancer activities and mechanisms of action were extracted from Pubmed, Web of Science and CNKI databases up to October 2022. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 guideline was followed. RESULTS: Crude extracts and 7 main bioactive phytochemicals (curcumol, ß-elemene, furanodiene, furanodienone, germacrone, curdione and curcumin) isolated from Curcumae Rhizoma have shown many anti-breast cancer pharmacological properties, including inhibiting cell proliferation, migration, invasion and stemness, reversing chemoresistance, and inducing cell apoptosis, cycle arrest and ferroptosis. The mechanisms of action were involved in regulating MAPK, PI3K/AKT and NF-κB signaling pathways. In vivo and clinical studies demonstrated that these compounds exhibited high anti-tumor efficacy and safety against breast cancer. CONCLUSION: These findings provide strong evidence that Curcumae Rhizoma acts as a rich source of phytochemicals and has robust anti-breast cancer properties.


Assuntos
Neoplasias da Mama , Medicamentos de Ervas Chinesas , Humanos , Feminino , Medicamentos de Ervas Chinesas/farmacologia , Fosfatidilinositol 3-Quinases , Curcuma/química , Rizoma/química , Transdução de Sinais
18.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108568

RESUMO

Compounds derived from Curcuma longa L. (C. longa) have been extensively studied and reported to be effective and safe for the prevention and treatment of various diseases, but most research has been focused on curcuminoids derived from C. longa. As neurodegenerative diseases are associated with oxidation and inflammation, the present study aimed to isolate and identify active compounds other than curcuminoids from C. longa to develop substances to treat these diseases. Seventeen known compounds, including curcuminoids, were chromatographically isolated from the methanol extracts of C. longa, and their chemical structures were identified using 1D and 2D NMR spectroscopy. Among the isolated compounds, intermedin B exhibited the best antioxidant effect in the hippocampus and anti-inflammatory effect in microglia. Furthermore, intermedin B was confirmed to inhibit the nuclear translocation of NF-κB p-65 and IκBα, exerting anti-inflammatory effects and inhibiting the generation of reactive oxygen species, exerting neuroprotective effects. These results highlight the research value of active components other than curcuminoids in C. longa-derived compounds and suggest that intermedin B may be a promising candidate for the prevention of neurodegenerative diseases.


Assuntos
NF-kappa B , Fármacos Neuroprotetores , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Microglia/metabolismo , Curcuma/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Hipocampo/metabolismo , Diarileptanoides/farmacologia , Lipopolissacarídeos/farmacologia
19.
Phytomedicine ; 114: 154772, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37015187

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a common malignancy that can significantly diminish patients' quality of life. Astragalus mongholicus Bunge-Curcuma aromatica Salisb. (AC) is an ancient Chinese medicinal combination used for the treatment of CRC. However, the core ingredients and targets involved in regulating lipid and amino acid metabolism in CRC remain unknown. We aimed to explore the key components and pharmacological mechanisms of AC in the treatment of CRC through a comprehensive analysis of network metabolomics, network pharmacology, molecular docking, and biological methods. METHODS: Ultra-performance liquid chromatography/mass spectrometry (MS) was used for quality control. Gas chromatography/MS and liquid chromatography/MS were used to detect metabolites in the feces and serum of CRC mice. A network pharmacology approach and molecular docking were used to explore the potential genes involved in the CRC-target-component network. The effect of AC on tumor immunity was investigated using flow cytometry and polymerase chain reaction. RESULTS: AC, high-dose AC, and 5-fluorouracil treatment reduced liver metastasis and tumor mass. Compared with the CRC group, 2 amino acid metabolites and 14 lipid metabolites (LPC, PC, PE) were upregulated and 15 amino acid metabolites and 9 lipid metabolites (TG, PE, PG, 12-HETE) were downregulated. Subsequently, through network analysis, four components and six hub genes were identified for molecular docking. AC can bind to ALDH1B1, ALDH2, CAT, GOT2, NOS3, and ASS1 through beta-Elemene, canavanine, betaine, and chrysanthemaxanthin. AC promoted the responses of M1 macrophages and down-regulated the responses of M2 macrophages, Treg cells, and the gene expression of related factors. CONCLUSION: Our research showed that AC effectively inhibited the growth and metastasis of tumors and regulated metabolism and immunity in a CRC mouse model. Thus, AC may be an effective alternative treatment option for CRC.


Assuntos
Neoplasias Colorretais , Medicamentos de Ervas Chinesas , Camundongos , Animais , Astragalus propinquus/química , Curcuma/química , Simulação de Acoplamento Molecular , Qualidade de Vida , Metabolômica/métodos , Aminoácidos , Neoplasias Colorretais/patologia , Lipídeos , Medicamentos de Ervas Chinesas/farmacologia
20.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37047613

RESUMO

Curcumin shows anti-inflammatory activity, and it has been widely investigated for neurodegenerative diseases, adjuvant treatment in AIDS and antitumor activity against different tumors, among other activities. The goal of this work was to evaluate the capacity of curcumin and its derivatives (bisdemethoxycurcumin and bisdemethylcurcumin) in preventing the irritant effects of topically applied xylol and to assess the intrinsic capacity of curcuminoids in permeating human skin by ex vivo permeation tests. Its secondary goal was to validate an HPLC method to simultaneously determine the curcuminoids in the samples from the ex vivo permeation studies and drug extraction from the skin. Curcuminoid quantification was performed using an RP-C18 column, at isocratic conditions of elution and a detection wavelength of 265 nm. The method was specific with a suitable peak resolution, as well as linear, precise, and accurate in the range of 0.195-3.125 µg/mL for the three curcuminoids. Bisdemethylcurcumin showed the greatest permeation through the human skin, and it was the curcuminoid that was most retained within the human skin. The anti-inflammatory activity of the curcuminoids was evaluated in vivo using a xylol-induced inflammation model in rats. Histological studies were performed to observe any changes in morphology at the microscopic level, and these three curcuminoids were found to be respectful within the skin structure. These results show that these three curcuminoids are suitable for anti-inflammatory formulations for dermal applications, and they can be properly quantified using HPLC-UV.


Assuntos
Curcumina , Humanos , Ratos , Animais , Curcumina/farmacologia , Curcumina/química , Cromatografia Líquida de Alta Pressão/métodos , Curcuma/química , Diarileptanoides , Anti-Inflamatórios/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...